기본 개념오차(Error): 실제 값에서 예측 값(y_true - y_pred)을 뺀 값입니다. 모델이 예측한 값(모집단의 회귀식에서 얻은 값)과 실제 데이터 사이의 차이를 의미합니다. 일반적으로 모델의 성능을 평가할 때 사용되며, 모델이 데이터를 얼마나 잘 예측하는지를 나타냅니다. 이상적인 경우 오차는 0에 가깝습니다. 실제 데이터 생성 과정에서 발생하는 불확실성을 의미하며, 모델이 잡아낼 수 없는 데이터의 실제 변동성을 포함합니다. 오차는 주로 이론적이며 관측 불가능하다는 점에서 잔차와 다릅니다. 잔차(Residual): 통계 모델이나 머신러닝에서 관측된 값과 모델에 의해 예측된 값 사이의 차이 (표의 회귀식에서 얻은 값) 입니다. 모든 데이터 포인트에 대한 잔차의 분포를 분석함으로써 모델의 적합성..
선형회귀는 트레이닝 데이터를 사용하여 데이터의 특성과 상관관계를 분석하고, 이를 기반으로 모델을 학습시켜, 트레이닝데이터에 포함되지 않은 새로운 데이터에 대한 결과를 연속적인 숫자값으로 예측하는 과정입니다.부동산 가격 예측: 주택의 평균 방 개수(feature), 주택의 가격(target)임금 결정: 경력(feature), 특정 직원의 예상임금(target)선형회귀시스템에서의 학습이란 트레이닝 데이터의 분석을 통해 데이터의 분포를 가장 잘 표현하는 선형관계를 나타내는일차함수의 가중치𝑾와 바이어스𝒃를 찾아가는 과정입니다.여기에서 중요한 것은 직선 𝒚 = 𝑾𝒙 + 𝒃 함수의 계산 값 𝒚와 정답 𝒕의 차이(오차)를 최대한 작게 만드는 것입니다. 주어진 트레이닝 데이터를 바탕으로 오차들의 합, 즉..
- Total
- Today
- Yesterday
- 해시
- git
- 티스토리챌린지
- speaking
- cnn
- Numpy
- LLM
- 리스트
- 코딩테스트
- Hugging Face
- LIST
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- clustering
- 손실함수
- classification
- 오블완
- Transformer
- 파이썬
- PEFT
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- Github
- nlp
- Array
- recursion #재귀 #자료구조 # 알고리즘
- t5
- Lora
- Python
- RAG
- English
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |