다중 클래스 문제는 이진 분류가 아닌 다중 분류 문제를 의미합니다. 이를 조금 더 자세히 설명하면 다음과 같습니다:이진 분류 (Binary Classification)이진 분류는 두 개의 클래스(또는 범주) 중 하나로 데이터를 분류하는 문제를 말합니다. 예를 들어:이메일이 스팸인지 아닌지를 분류 (스팸 vs. 정상 메일)환자가 특정 질병이 있는지 없는지를 분류 (질병 있음 vs. 없음)이진 분류 문제에서는 일반적으로 두 개의 레이블을 사용하며, Gini Index나 이진 크로스 엔트로피 손실 함수를 사용하여 모델을 학습시킵니다.다중 클래스 분류 (Multiclass Classification)다중 클래스 분류는 두 개 이상의 클래스 중 하나로 데이터를 분류하는 문제를 말합니다. 예를 들어:손글씨 숫자 인..

이진분류는 트레이닝 데이터의 특성과 그들간의 상관관계를 분석하여, 임의의 입력데이터를 사전에 정의된 두 가지 범주중 하나로 분류할 수 있는 예측모델을 만드는 과정이메일 스팸 분류, Spam(1) 또는 Ham(0)금융 사기 탐지, 사기 거래(1) 또는 정상 거래(0)의료 진단, 암 조직(1) 또는 정상 조직(0) 로지스틱 회귀 알고리즘은①트레이닝 데이터의 특성과 분포를 나타내는 최적의 직선을 찾고,②해당 직선을 기준으로 데이터를 위(1)나 아래(0) 또는 왼쪽(1)이나 오른쪽(0) 등으로 분류하는 방법입니다.이러한 로지스틱 회귀는 이진분류 시스템의 알고리즘 중에서도 정확도가 높은 알고리즘으로 알려져 있어서 딥러닝에서도기본적인 컴포넌트로 사용되고 있습니다. 로지스틱 회귀 알고리즘을 도식화하면 다음과 같습니..
- Total
- Today
- Yesterday
- cnn
- Hugging Face
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- RAG
- 오블완
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- LIST
- LLM
- English
- git
- 손실함수
- 리스트
- t5
- speaking
- classification
- Array
- 파이썬
- PEFT
- recursion #재귀 #자료구조 # 알고리즘
- Lora
- Github
- Python
- Numpy
- 코딩테스트
- Transformer
- nlp
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- clustering
- 해시
- 티스토리챌린지
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |