[LLM] LM에서 LLM으로 발전하는 과정에서의 주요 변화
BERT, BART, T5와 같은 모델에서 LLM(대형 언어 모델)로 넘어오면서 모델이 더 다양한 NLP 작업을 하나로 통합할 수 있게 된 데는 몇 가지 주요 변화와 개선점이 있습니다. 이 과정에서 모델의 훈련 방식, 크기, 일반화 능력, 프롬프트 기반 학습 등이 발전하면서 여러 NLP 작업을 통합하여 처리할 수 있게 되었습니다.1. 모델 크기의 증가BERT, BART, T5와 같은 초기 모델은 대규모로 훈련된 언어 모델이었지만, GPT-3, GPT-4와 같은 LLM은 훨씬 더 많은 파라미터를 가지고 있습니다.BERT는 수억 개의 파라미터를 가졌지만, GPT-3는 1750억 개의 파라미터를 가지고 있습니다.모델 크기의 증가는 모델이 훨씬 더 방대한 양의 데이터를 학습하고, 더 복잡하고 다양한 언어 패턴을..
DeepLearning/NLP
2024. 9. 19. 12:26
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 해시
- LLM
- 파이썬
- nlp
- English
- Numpy
- Array
- 리스트
- PEFT
- LIST
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- speaking
- Hugging Face
- clustering
- Github
- recursion #재귀 #자료구조 # 알고리즘
- cnn
- Lora
- RAG
- classification
- Python
- 티스토리챌린지
- 손실함수
- t5
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- Transformer
- 코딩테스트
- git
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- 오블완
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
글 보관함