파인튜닝에는 여러 가지 방법이 있으며, 각 방법은 모델의 특정 부분을 조정하거나 최적화하여 작업에 맞게 성능을 개선하는 데 사용됩니다. 여기서는 대표적인 파인튜닝 방법과 기술들을 설명하겠습니다.1. 전통적 파인튜닝 (Standard Fine-tuning)개념: 전체 모델의 가중치를 특정 작업에 맞게 재조정하는 가장 기본적인 방법입니다. 보통 프리트레이닝된 모델을 가져와 특정 데이터셋으로 모델 전체를 재학습시킵니다.적용: BERT와 같은 사전 학습된 언어 모델을 특정 분류 작업이나 요약 작업에 맞게 조정하는 경우.장점: 강력한 성능을 얻을 수 있으며, 특정 작업에 맞춰 모델이 완전히 최적화됩니다.단점: 모델 크기가 클 경우, 전통적인 파인튜닝은 많은 메모리와 계산 자원을 소모합니다.2. 프리징 (Freez..
세 가지 방법인 파인튜닝(fine-tuning), 인컨텍스트 러닝(in-context learning), 그리고 프리트레이닝(pre-training)의 차이를 한국어로 설명드리겠습니다.1. 프리트레이닝 (Pre-training)정의: 프리트레이닝은 모델이 처음에 일반적인 패턴과 언어 구조, 그리고 다양한 지식을 대규모 데이터셋을 통해 학습하는 단계입니다.목표: 모델이 기본적인 언어 이해 능력과 일반적인 특징을 학습해, 이후에 더 구체적인 작업에 적용할 수 있도록 준비시키는 것입니다.과정: 자가 지도 학습(self-supervised learning) 방식으로, 예를 들어 다음 단어를 예측하거나(BERT의 경우 일부 단어 마스킹 후 예측), GPT처럼 주어진 문맥에서 다음 단어를 생성하는 방식으로 학습됩니..
- Total
- Today
- Yesterday
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- speaking
- Hugging Face
- Array
- Lora
- 손실함수
- Transformer
- Github
- PEFT
- 오블완
- t5
- classification
- 티스토리챌린지
- Python
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- clustering
- nlp
- English
- Numpy
- recursion #재귀 #자료구조 # 알고리즘
- 해시
- git
- cnn
- RAG
- 파이썬
- LIST
- 리스트
- 코딩테스트
- LLM
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |