Ensemble > Boosting: Gradient Boosting Machine(GBM), XGBoost, LightGBM, CatBoost, NGBoost
Gradient Boosting Machine (GBM), XGBoost, LightGBM, CatBoost, NGBoost는 모두 Gradient Boosting 알고리즘에 기반한 앙상블 학습 방법입니다. 이들 알고리즘은 각각 고유한 최적화 및 특성을 가지고 있어 다양한 데이터와 문제 유형에 대해 탁월한 성능을 발휘합니다. 각 알고리즘의 원리와 특징을 자세히 설명하겠습니다.1. Gradient Boosting Machine (GBM)원리GBM은 여러 개의 약한 학습기(주로 결정 트리)를 순차적으로 학습시켜 강한 학습기를 만드는 방법입니다. 각 단계에서 새로운 약한 학습기는 이전 모델의 잔차(residual)를 예측하여 모델의 성능을 향상시킵니다. 모델의 예측은 모든 약한 학습기의 예측을 합산하여 이루어..
ML
2024. 5. 30. 15:48
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- speaking
- LLM
- 손실함수
- RAG
- 파이썬
- PEFT
- clustering
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- 리스트
- Transformer
- recursion #재귀 #자료구조 # 알고리즘
- cnn
- Github
- t5
- nlp
- Lora
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- 해시
- Array
- Numpy
- LIST
- Python
- 코딩테스트
- git
- 오블완
- Hugging Face
- 티스토리챌린지
- English
- classification
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함