[LLM] 모델이 학습하는 방법: fine-tuning/in-context learning/pre-training
세 가지 방법인 파인튜닝(fine-tuning), 인컨텍스트 러닝(in-context learning), 그리고 프리트레이닝(pre-training)의 차이를 한국어로 설명드리겠습니다.1. 프리트레이닝 (Pre-training)정의: 프리트레이닝은 모델이 처음에 일반적인 패턴과 언어 구조, 그리고 다양한 지식을 대규모 데이터셋을 통해 학습하는 단계입니다.목표: 모델이 기본적인 언어 이해 능력과 일반적인 특징을 학습해, 이후에 더 구체적인 작업에 적용할 수 있도록 준비시키는 것입니다.과정: 자가 지도 학습(self-supervised learning) 방식으로, 예를 들어 다음 단어를 예측하거나(BERT의 경우 일부 단어 마스킹 후 예측), GPT처럼 주어진 문맥에서 다음 단어를 생성하는 방식으로 학습됩니..
DeepLearning/NLP
2024. 9. 19. 09:43
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- RAG
- speaking
- cnn
- Hugging Face
- 코딩테스트
- PEFT
- 오블완
- LLM
- Transformer
- 리스트
- Lora
- Array
- 파이썬
- English
- recursion #재귀 #자료구조 # 알고리즘
- t5
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- Github
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- Python
- git
- 해시
- Numpy
- LIST
- nlp
- 티스토리챌린지
- 손실함수
- classification
- clustering
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함