라쏘(Lasso)와 리지(Ridge): loss function + regularization term
라쏘(Lasso)와 리지(Ridge)는 회귀 분석에서 자주 사용되는 두 가지 규제(regularization) 기법입니다만 다른 머신러닝모델에서도 활용될 수 있습니다. 이들은 모델의 복잡도를 조절하여 과적합(overfitting)을 방지하고, 예측 성능을 향상시키는 데 도움을 줍니다. 간단히 설명하면 다음과 같습니다.라쏘 회귀란 무엇인가요?라쏘 회귀는 데이터 분석에서 예측 모델을 만드는 방법 중 하나입니다. 특히, 데이터에 많은 특성(변수)이 있을 때 중요한 특성만을 선택해 주는 방법입니다.라쏘 회귀의 기본 개념Least Absolute Shrinkage and Selection Operator (Lasso):이름의 의미: '최소 절대 축소 및 선택 연산자'라는 뜻입니다.목표: 중요한 특성만 남기고 불필..
ML
2024. 5. 28. 16:05
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Lora
- PEFT
- 리스트
- 파이썬
- 코딩테스트
- Numpy
- speaking
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- cnn
- Transformer
- RAG
- Hugging Face
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- t5
- 오블완
- recursion #재귀 #자료구조 # 알고리즘
- Github
- 티스토리챌린지
- Array
- English
- LLM
- classification
- git
- 해시
- LIST
- nlp
- clustering
- Python
- 손실함수
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함