본문 바로가기 메뉴 바로가기

문과생CS정복기

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

문과생CS정복기

검색하기 폼
  • 분류 전체보기 (309)
    • Upstage AI 3기 (16)
      • 패스트러너_기자단 (8)
      • 프로젝트_개인회고 (4)
    • CS기초 (2)
    • Python (47)
    • DeepLearning (97)
      • CV (3)
      • NLP (43)
    • ML (52)
    • 코딩테스트 (12)
    • 통계 (14)
    • 개인프로젝트 (0)
    • 블로그 (30)
    • 비지니스영어회화 (16)
    • 부동산 (1)
  • 방명록

선형변환 (1)
[LLM] Transformer 모델에서 선형 변환(linear transformation)을 사용하는 이유

Transformer 모델에서 선형 변환(linear transformation)을 사용하는 이유는 입력 임베딩을 Query, Key, Value로 변환하여 Self-Attention 메커니즘을 적용하기 위해서입니다. 그럼 왜 이 선형 변환이 필요한지, 그리고 변환이 어떻게 이루어지는지 단계적으로 설명하겠습니다.1. 왜 선형 변환을 사용하는가?Transformer에서 입력 임베딩 벡터를 그대로 Query, Key, Value로 사용할 수 없기 때문에, 선형 변환을 통해 서로 다른 표현 공간으로 변환합니다. 각 역할에 따라 다르게 학습된 변환을 적용함으로써, Self-Attention 메커니즘이 더 효과적으로 작동할 수 있습니다.이유 1: 역할의 분리Query: 각 단어가 "내가 어떤 정보를 찾고 있는가?..

DeepLearning/NLP 2024. 9. 16. 07:45
이전 1 다음
이전 다음
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • PEFT
  • LLM
  • #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
  • recursion #재귀 #자료구조 # 알고리즘
  • speaking
  • LIST
  • 파이썬
  • clustering
  • Github
  • git
  • 해시
  • 오블완
  • #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
  • classification
  • 리스트
  • 손실함수
  • nlp
  • Numpy
  • RAG
  • Hugging Face
  • Array
  • Python
  • 코딩테스트
  • Transformer
  • Lora
  • t5
  • cnn
  • English
  • #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
  • 티스토리챌린지
more
«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바