본문 바로가기 메뉴 바로가기

문과생CS정복기

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

문과생CS정복기

검색하기 폼
  • 분류 전체보기 (309)
    • Upstage AI 3기 (16)
      • 패스트러너_기자단 (8)
      • 프로젝트_개인회고 (4)
    • CS기초 (2)
    • Python (47)
    • DeepLearning (97)
      • CV (3)
      • NLP (43)
    • ML (52)
    • 코딩테스트 (12)
    • 통계 (14)
    • 개인프로젝트 (0)
    • 블로그 (30)
    • 비지니스영어회화 (16)
    • 부동산 (1)
  • 방명록

왜도 (1)
왜도Skewness/ 첨도Kurtosis

왜도skewness데이터의 분포가 얼마나 비대칭인지 알기 위해 우리는 왜도skewness라는 표현을 씁니다. 그래프의 꼬리라고 생각하면 됩니다. 왜도값은 -1~+1까지입니다. 비대칭이 커질수록 왜도의 절대값은 커집니다.왜도값 양수: 평균>중앙값: 평균>중앙값>최빈값인 경우가 많다, positively skewed,  right-skewed, 오른쪽으로 긍정적인 방향으로 긴 꼬리를 가지고 있다고 표현합니다. 왜도값 음수: 평균  평균중앙값 negatively skewed, left-skewed, 왼쪽으로 부적인 방향으로 긴 꼬리를 가지고 있다고 표현합니다.왜도값 0: 평균==중앙값(비슷한 경향), 평균=중앙값=최빈값인 경우가 많습니다. 첨도(Kurtosis)첨도(Kurtosis)는 데이터 분포의 뾰족한 정..

통계 2024. 4. 26. 12:06
이전 1 다음
이전 다음
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
  • English
  • cnn
  • LLM
  • nlp
  • classification
  • clustering
  • Numpy
  • 손실함수
  • Array
  • 티스토리챌린지
  • t5
  • Hugging Face
  • recursion #재귀 #자료구조 # 알고리즘
  • Github
  • 코딩테스트
  • Python
  • 오블완
  • git
  • LIST
  • Lora
  • Transformer
  • speaking
  • 리스트
  • PEFT
  • #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
  • 파이썬
  • #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
  • 해시
  • RAG
more
«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바