본문 바로가기 메뉴 바로가기

문과생CS정복기

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

문과생CS정복기

검색하기 폼
  • 분류 전체보기 (309)
    • Upstage AI 3기 (16)
      • 패스트러너_기자단 (8)
      • 프로젝트_개인회고 (4)
    • CS기초 (2)
    • Python (47)
    • DeepLearning (97)
      • CV (3)
      • NLP (43)
    • ML (52)
    • 코딩테스트 (12)
    • 통계 (14)
    • 개인프로젝트 (0)
    • 블로그 (30)
    • 비지니스영어회화 (16)
    • 부동산 (1)
  • 방명록

Cee (1)
인공신경망은 MLE 기계다!

인공신경망(ANN)에서 최대우도추정(Maximum Likelihood Estimation, MLE) 방법을 사용하는 경우가 많습니다. MLE는 주어진 데이터에 대해 가장 가능성이 높은 모델 파라미터를 찾는 통계적 방법입니다. 신경망의 학습에서 이를 적용하는 것은 네트워크 파라미터를 조정하여 주어진 입력에 대한 출력이 실제 데이터의 분포를 가장 잘 반영하도록 만드는 것을 의미합니다.MLE와 인공신경망인공신경망의 학습 과정은 크게 두 부분으로 나뉩니다: 손실 함수를 정의하고, 이 손실 함수를 최소화하는 파라미터를 찾는 것입니다. MLE 방법을 사용하는 경우, 손실 함수는 종종 데이터의 로그-우도(log-likelihood)의 음수를 사용합니다. 간단히 말해서, MLE는 모델 파라미터를 조정하여 관측된 데이터..

DeepLearning 2024. 6. 27. 00:59
이전 1 다음
이전 다음
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • Transformer
  • cnn
  • 파이썬
  • #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
  • 코딩테스트
  • LIST
  • speaking
  • 리스트
  • t5
  • recursion #재귀 #자료구조 # 알고리즘
  • clustering
  • English
  • git
  • #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
  • Hugging Face
  • LLM
  • Array
  • 오블완
  • classification
  • #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
  • 손실함수
  • nlp
  • Python
  • Github
  • Lora
  • RAG
  • Numpy
  • 티스토리챌린지
  • 해시
  • PEFT
more
«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바