Model Explanation 모델설명
모델 설명(Model Explanation)은 머신러닝 모델의 예측 결과를 이해하고 신뢰할 수 있도록 하는 중요한 과정입니다. 모델 설명은 특히 블랙박스 모델(예: 딥러닝, 랜덤 포레스트)에서 중요합니다. 모델 설명을 위해 다양한 방법과 도구가 존재하며, 대표적인 방법은 다음과 같습니다:1. 단순 모델 사용단순하고 해석 가능한 모델(예: 선형 회귀, 의사결정 나무)을 사용하면 모델의 동작을 더 쉽게 설명할 수 있습니다.2. Feature Importance특징 중요도는 모델이 예측을 위해 사용하는 각 특징의 상대적 중요도를 나타냅니다. 랜덤 포레스트와 같은 앙상블 모델에서는 각 특징의 중요도를 추출할 수 있습니다.예시from sklearn.ensemble import RandomForestClassifi..
ML
2024. 5. 30. 14:57
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- PEFT
- Github
- 해시
- English
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- recursion #재귀 #자료구조 # 알고리즘
- clustering
- Array
- Transformer
- nlp
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- Numpy
- LIST
- 오블완
- 코딩테스트
- 손실함수
- git
- RAG
- classification
- Python
- t5
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- speaking
- cnn
- 파이썬
- 티스토리챌린지
- 리스트
- Hugging Face
- Lora
- LLM
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함