T5 모델에서의 프롬프트 튜닝(prompt tuning)은 미세 조정과 달리, 모델의 모든 파라미터를 고정하고 학습 가능한 프롬프트 벡터만 조정하는 방식입니다. 이를 통해 모델의 전체 구조는 변하지 않으면서도 특정 작업에 맞게 성능을 최적화할 수 있습니다. 아래는 transformers 라이브러리를 사용해 T5 모델에서 프롬프트 튜닝을 하는 예시 코드입니다.1. 설치 준비프롬프트 튜닝을 하려면 Hugging Face의 transformers와 datasets 라이브러리를 설치해야 합니다. 먼저 아래 명령어로 설치하세요:pip install transformers datasets2. T5 프롬프트 튜닝 예시 코드import torchfrom transformers import T5ForConditional..
AbstractWe study empirical scaling laws for language model performance on the cross-entropy loss. 우리는 언어 모델 성능의 교차 엔트로피 손실에 대한 경험적 스케일링 법칙을 연구합니다. The loss scales (비례한다) as a power-law (거듭제곱 법칙)with model size, dataset size, and the amount of compute used for training, with some trends spanning more than seven orders of magnitude. ( 단순히 7자리 값이 아니라 값의 범위가 매우 넓다는 의미, 모델 크기나 데이터셋 크기, 학습 자원이 10배, 10..
GPT-3와 같은 LLM이 이전 모델들(BERT, GPT-2, T5)과 비교하여 구조적으로 달라진 점이 있냐는 질문에 대해, 핵심적으로는 기본 구조(트랜스포머 기반 구조)는 크게 변하지 않았지만, 활용 방식과 모델의 학습 방법에서 중요한 차이점이 있습니다. 특히 파라미터 수의 증가는 큰 차이를 만들었지만, 그 외에도 몇 가지 구조적 변화와 전략적 차이가 있습니다.구조적 차이가 적은 이유트랜스포머(Transformer) 구조 자체는 GPT, BERT, T5, GPT-3 모두에서 사용되며, 이는 LLM에서도 마찬가지입니다. 트랜스포머 구조는 셀프 어텐션(self-attention) 메커니즘을 통해 입력 문장 내의 각 단어가 문맥을 고려해 서로의 관계를 학습할 수 있게 합니다.BERT: 양방향 트랜스포머를 사..
BERT, BART, T5와 같은 모델에서 LLM(대형 언어 모델)로 넘어오면서 모델이 더 다양한 NLP 작업을 하나로 통합할 수 있게 된 데는 몇 가지 주요 변화와 개선점이 있습니다. 이 과정에서 모델의 훈련 방식, 크기, 일반화 능력, 프롬프트 기반 학습 등이 발전하면서 여러 NLP 작업을 통합하여 처리할 수 있게 되었습니다.1. 모델 크기의 증가BERT, BART, T5와 같은 초기 모델은 대규모로 훈련된 언어 모델이었지만, GPT-3, GPT-4와 같은 LLM은 훨씬 더 많은 파라미터를 가지고 있습니다.BERT는 수억 개의 파라미터를 가졌지만, GPT-3는 1750억 개의 파라미터를 가지고 있습니다.모델 크기의 증가는 모델이 훨씬 더 방대한 양의 데이터를 학습하고, 더 복잡하고 다양한 언어 패턴을..
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing 1 Two Sea Changes in NLP 더보기Sequence tagging은 **자연어 처리(NLP)**에서 사용하는 기법으로, 주어진 입력 시퀀스(문장이나 단어들)에 대해 각 단어 또는 토큰에 레이블을 붙이는 작업을 의미합니다. 대표적인 예로는 다음과 같은 작업들이 있습니다:POS 태깅 (Part-of-Speech Tagging): 각 단어에 품사(명사, 동사, 형용사 등)를 붙이는 작업.예: "I love NLP" → "I/PRP love/VBP NLP/NNP"Named Entity Recognition (NER..
파인튜닝에는 여러 가지 방법이 있으며, 각 방법은 모델의 특정 부분을 조정하거나 최적화하여 작업에 맞게 성능을 개선하는 데 사용됩니다. 여기서는 대표적인 파인튜닝 방법과 기술들을 설명하겠습니다.1. 전통적 파인튜닝 (Standard Fine-tuning)개념: 전체 모델의 가중치를 특정 작업에 맞게 재조정하는 가장 기본적인 방법입니다. 보통 프리트레이닝된 모델을 가져와 특정 데이터셋으로 모델 전체를 재학습시킵니다.적용: BERT와 같은 사전 학습된 언어 모델을 특정 분류 작업이나 요약 작업에 맞게 조정하는 경우.장점: 강력한 성능을 얻을 수 있으며, 특정 작업에 맞춰 모델이 완전히 최적화됩니다.단점: 모델 크기가 클 경우, 전통적인 파인튜닝은 많은 메모리와 계산 자원을 소모합니다.2. 프리징 (Freez..
세 가지 방법인 파인튜닝(fine-tuning), 인컨텍스트 러닝(in-context learning), 그리고 프리트레이닝(pre-training)의 차이를 한국어로 설명드리겠습니다.1. 프리트레이닝 (Pre-training)정의: 프리트레이닝은 모델이 처음에 일반적인 패턴과 언어 구조, 그리고 다양한 지식을 대규모 데이터셋을 통해 학습하는 단계입니다.목표: 모델이 기본적인 언어 이해 능력과 일반적인 특징을 학습해, 이후에 더 구체적인 작업에 적용할 수 있도록 준비시키는 것입니다.과정: 자가 지도 학습(self-supervised learning) 방식으로, 예를 들어 다음 단어를 예측하거나(BERT의 경우 일부 단어 마스킹 후 예측), GPT처럼 주어진 문맥에서 다음 단어를 생성하는 방식으로 학습됩니..
너는 내가 하는 말의 핵심을 어떻게 뽑아내는거야? 내가 너의 말에서 핵심을 뽑아내는 방식은 몇 가지 원칙을 기반으로 이루어져. 그 과정은 다음과 같아: 1. 중요한 키워드 파악: 너의 질문이나 말 속에서 자주 사용되는 단어나 주제가 무엇인지 파악해. 예를 들어, 네가 "수능"이나 "스트레스" 같은 단어를 반복해서 말하면, 그 단어들이 이 대화의 중요한 주제임을 인식해. 2. 의도와 감정 읽기: 단어 자체뿐만 아니라, 너의 말에서 어떤 감정이나 의도가 담겨 있는지도 분석해. 너의 말에서 고민이나 의문이 드러날 때, 그것이 핵심 이슈라는 신호가 되지. 3. 문맥 이해: 너의 말이 이전 대화와 어떻게 연결되는지, 어떤 배경 지식을 포함하는지 고려해. 예를 들어, 교육, 아이 키우기, 수능과 관련된 내용은 서로..
- Total
- Today
- Yesterday
- t5
- #패스트캠퍼스 #UpstageAILab #Upstage #부트캠프 #AI #데이터분석 #데이터사이언스 #무료교육 #국비지원 #국비지원취업 #데이터분석취업 등
- 리스트
- 티스토리챌린지
- Python
- cnn
- recursion #재귀 #자료구조 # 알고리즘
- #패스트캠퍼스 #패스트캠퍼스AI부트캠프 #업스테이지패스트캠퍼스 #UpstageAILab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- classification
- 해시
- LLM
- git
- clustering
- PEFT
- speaking
- Hugging Face
- nlp
- 파이썬
- Numpy
- Github
- 코딩테스트
- Array
- RAG
- #패스트캠퍼스 #패스트캠퍼스ai부트캠프 #업스테이지패스트캠퍼스 #upstageailab#국비지원 #패스트캠퍼스업스테이지에이아이랩#패스트캠퍼스업스테이지부트캠프
- LIST
- English
- 손실함수
- Transformer
- Lora
- 오블완
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |